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Although the derivations in this paper are given in terms
of the magnetic field, the results are also valid for the electric
field provided that dual quantities are substituted and the
appropriate boundary conditions are added.
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High-Azimuthal-Index Resonances in Ferrite
MIC Disk Resonators

PIETRO bpE SANTIS, MEMBER, IEEE

Abstract—This paper presents a study of the nonreciprocal high-
azimuthal-index zero-radial-order modes which may resonate in ferrite
MIC disk resonators magnetized perpendicularly to the ground plane.
Both ferrite volume (FV) and edge-gufded-wave (EGW) modes are
investigated by using a suitable equivalent model. It is found that when
the ferrite is saturated, a simple empirical parameter is sufficient to
characterize the fringing-field effects at the disk’s edge. )

I. INTRODUCTION

ECENTLY [1], [2], ferrite MIC disk resonators of
R large diameter have received some attention because
they are suitable to study the propagation characteristics of
the “edge-guided” waves (EGW) [3] in very much the
same way as MIC ring resonators were used to study quasi-
TEM propagation in isotropic MIC’s. '
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Among the various modes which may resonate in such
disk resonators, those appropriate to studying EGW
characteristics are the TM, , o modes with n = 4,5,6, - -.
These modes are TM with respect to the Z-axis, which is
taken perpendicular to the ground plane. They present no
nodes in the radial direction and are Z-independent.

An approximate analysis of a ferrite disk resonator mag-
netized perpendicularly to the ground plane was developed
by the present author [4] using perfect magnetic-wall
boundary conditions at the disk’s edge. Subsequent experi-
ments carried out by Brundle [2] measured EGW phase
velocities 8 percent off the theoretical predictions.

The disagreement between theory and experiment was
probably due to the use of unaccurate boundary conditions;
i.e., to the neglect of fringing-field effects.

It is the purpose of this paper to study the fringing-field
effects in ferrite MIC disk resonators and, more specifically,
to evaluate how they affect the TM, , , resonances. The
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Fig. 1. (a) The MIC disk resonator on a ferrite substrate magnetized
perpendicularly to the ground plane. (b) A radial cross section of the
equivalent model.

study is based on an equivalent model which has been
previously used to evaluate fringing-field effects in isotropic
MIC’s [5] and EGW in ferrite MIC’s of semiinfinite width
[1]. The details of the equivalent model are presented in the
following section. Perhaps the most important feature of the
equivalent model is that it is very simple and is semi-
empirical in character; i.e., it contains a “fringing-field
parameter” b/b’, to be determined by experiment.

The experimental determination of the fringing-field
parameter is presented in Section III.

In Section IV the nature of the various resonances will
be discussed. It will be shown that even if all the TM, , o
modes have E,(r) with no nodes in the radial direction, it is
convenient to further subdivide them as belonging to two
different groups: the EGW-TM, , , modes and the FV-
TM, 0 modes where FV stands for “ferrite volume.”

“Transition points” will be identified on the mode chart
of the resonator where the EGW modes transform into FV
modes. The presence of these transition points will be shown
to be due to the fringing fields at the disk’s edge.

In Section V, it is shown how the knowiedge of b/b" allows
one to calculate the ratio between the reactive power stored
in the fringing fields and the RF power contained in the
ferrite volume under the strip conductor.

II. Tue EQUIVALENT MODEL

In a previous work [1] the present author proposed an
equivalent model to analyze the fringing fields associated
with the EGW propagation in rectilinear microstrip lines of
semiinfinite width. The analysis had a semiempirical charac-
ter; i.e., it contained an empirical parameter to be deter-
mined by experiment.
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The analysis was, in fact, based on the model used by
Getsinger [5] for isotropic MIC’s. Here we apply the same
type of equivalent model to an MIC disk resonator.

Fig. 1 represents the actual structure (a) as well as a radial
cross section of the approximate model (b). In the following
it will be demonstrated that the ratio between the quantities
b and b’ indicated in Fig. 1(b) is a suitable parameter to
characterize the fringing fields. The analysis of the equiv- -
alent model begins by recognizing that it is constituted of
two radial waveguides of heights b and b’ extending, respect-
ively, for 0 < r < R and r > R, joined together at r = R.

As in Getsinger’s analysis, the junction effects at r = R
are neglected because they greatly complicate the analysis
and are not found necessary for practical results. Under
these circumstances we assume Z-independent fields so that
the total electromagnetic field in each waveguide can be
represented as a superposition of pure TE, = (H;, E,,
E, # 0) and TM, = (E,, Hy, H, # 0) modes. Here we
shall focus our attention on the TM, modes as they are the
only ones affected by the magnetic anisotropy of the ferrite.
We then associate to the TM, modes in each waveguide a
radial transmission line of radial characteristic impedance

(6]

_ bE;4(r)
T dmrHg(r) M
— b ’EZa(r ) (2)
O 2mrHp(r)

Here the subscripts f and a, respectively, indicate “ferrite”
and “air.” The various field components in (1) and (2) are
calculated from Maxwell’s equations in the usual manner
(see, for example, [7]) and are repeated here for conve-
nience. Within the ferrite, for 0 < r < R, one finds

E;r = AJ (k) exp (+ Jjnf) 3)
Hyy = jAY [i ny Juksr) J,,'(k,r)] exp (+jnf) (4)
By kgr

H, = AY [& Ty F — J,,(k,r)] exp (£jn0)  (5)
Hy ker

with k, = (co/c)\/ Eplesr, Y = YO\/ es/iegr, and A is an
amplitude factor, w is the operation radian frequency, c is
the velocity of light in vacuum, &, and . are the relative
dielectric constant and effective magnetic permeability of
the ferrite, u, and u, are the diagonal and off-diagonal
entries of Polder’s tensor, Y, is the characteristic admittance
of vacuum, J, is a Bessel function of the first kind, and the
prime indicates differentiation with respect to the argument.
In air, for » > R, one finds

Ez, = BK,(kor) exp (£ jnb) ©)
H,, = —jBY K, (kor) exp (£ jn0) N
Hoy = 72X K (kor) exp (£ jn0) ®)

07‘

where k, = w/c, Bis an amplitude factor, and K, a modified
Bessel function of the second kind.
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Let us now substitute the field components (3), (4), (6),
and (7) into formulas (1) and (2) and impose the resonance
condition .

ZAR) + ZR) = 0 9)

where Z = —Z, and Za = Z,. Thus the characteristic
equation of the model is found to be

P - K/©)
Jn(X) Hq Ku(C)

with X = k R and { = kyR. Note that when p < 0, k;
is an imaginary quantity and J, must be replaced by the
modified Bessel’s function I,

In (10) the fringing-field parameter /b’ accounts for the
fringing-field effects and must be determined by experi-
mental techniques. The special cases b/b’ = O and b/d’ = 1,
respectively, correspond to the widely used “perfect mag-
netic-wall” and “‘parallel-plate waveguide” models. The
case b/b’ = 0 corresponds to a short-circuited guiding edge,
but is of no practical importance in a disk geometry.

As pointed out in [1], 5/b’ plays the same formal role as
in Getsinger’s analysis, and its practical utility is due to the
fact that it can be easily determined by experiment, and it
turns out to be a well-behaved, slowly varying function of
such quantities as the applied dc magnetic field H,, the
radius of curvature R, and the operation frequency w. In
Section V it will be shown how b/b’ is related to the fringing-
field admittance as seen from inside the ferrite under the
strip conductor and how, from this quantity, the reactive
power stored in the fringing fields can be calculated.

(10)

b
= ;, egel

III. THE DETERMINATION OF THE FRINGING-FIELD
PARAMETER b/b’

The determination of /b’ is made by carrying out swept-
frequency measurements of the transmission spectrum of the
structure shown in Fig. 1(a) for different values of H,,.

In this manner, one measures the “mode chart” of the
disk resonator. Fig. 2 is a typical mode chart representing
the first ten azimuthally resonating TM, , o modes measured
in a disk resonator with the following characteristics:
diameter, 30 mm; thickness of the YIG substrate, 0.6 mm;
drMs = 1780 Oe, &, = 15, AH, = 35 Oe. In order to
determine b/b’, (10) was solved for H, as a function of the
operation frequency /' = w/2n. The azimuthal index n was
given integer values from 1 to 10 and the parameter b/b’
ranged from zero to one with A(b/b") = 0.1.

Fig. 3 shows a family of curves which represent the
solutions of (10) when n = 6 and 0 < b/b’ < 1. Similar
curves were obtained for the other values of n.

When H, < 4nMs, i.e., the YIG substrate is partially
magnetized, the Green’s tensor [8] was used in conjunction
with a linear approximation [9] for the dependence of the
ferrite’s magnetization 4z M upon the applied magnetic bias
H, (see the insert of Fig. 3). One relevant feature of the
curves of Fig. 3 is the different algebraic sign of dH,/df for
Hy > 4nMg and Hy < 4nMg. Such a phenomenon has
been experimentally observed also in MIC ring resonators
and spherical YIG resonators [9].
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The determination of b/b’ was achieved by superimposing
the experimental points on the family of curves of Fig. 3.
In this manner, at each point one could easily determine the
numerical value of b/b’ which would produce the best
agreement between theory and experiment. What is shown
in Fig. 3 for the n = 6 case, was repeated for n ranging
from 4 to 10. An inspection of Fig. 3 immediately reveals
that a single value of b/b’ is not suitable to reproduce an
experimental tuning curve. This is particularly true in the
“unsaturated-ferrite” region H, < 4nMj.

Therefore, the parameter b/b’ must be a function of H,
and f. Fig. 4 represents the behavior of 5/b’ as a function of
H,. It was derived by comparing the theoretical tuning
curves with the experimental ones. In this figure one sees
that for n = 4,5,6, i.e., for resonance frequencies between
4 and 8 GHz, the values of b/’ cluster in the vicinity of a
curve whose equation was empirically found to be

; = 1.7 exp (—=1.2H,) + 0.27. (11
For n = 8,9,10,11, i.e., for frequencies between 8 and 12.5
GHz a better approximation was obtained by a curve of
equation

5 = 1.4 exp (—2.2H;) + 0.5, (12)
From these results, one can conclude that when the ferrite
is saturated, i.e., Hy > 1.78 kOe, bfb’ is a slowly varying
function of H,, and constant values of 0.35 at C band and
0.5 at X band are good approximations to the actual
situation,

Perhaps one important observation to be made at this
point is that the behavior of b/b’ as a function of H, for
H, < 1.78 kOe depends upon the shape of the 4nM — H,
curve.

As long as the assumed linear dependence of 4nM on H,
is an idealization of the actual physical situation, it is be-
lieved that the behavior of b/b’ in Fig. 4 should be
taken as a qualitative indication rather than providing
quantitative information. However, to the author’s knowl-
edge, no exact information as yet exists on the behavior of
4nM as a function of H, within a ferrite substrate mag-
netized perpendicularly to its plane under conditions of
partial magnetization.

IV. THE NATURE OF THE TM,, , o MODES

In our experiments, the nature of the various resonances
which appeared in the transmission spectrum of the resona-
tor, was ascertained in the following manner. The TM
character of the resonances was unambiguously recognized
by the fact that they were H,-dependent.

The Z-independence was assumed to be verified due to a
diameter-to-substrate-thickness ratio of 50. The azimuthal
index » was measured by means of an electric-field probe
attached to a horizontal wheel above the substrate [2]. As
far as the identification of the radial index was concerned, no
problem existed when p . < 0. Under these circumstances
E,(r) within the ferrite is in fact proportional to a modified
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Fig. 2. Experimental TM, , o mode resonances in a ferrite MIC disk resonator. The continuous line with asterisks

and the dashed line represent the transition-point locii, respectively, for 4xM = H, and 4nM = (4nMg/4nMy)-Hy

(Ho < 4nMs).
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Fig. 3.

Theoretical tuning curves for different values of b/6"-(n = 6). Open and solid circles are experimental points

representing, respectively, EGW and FV TMjy,,,o resonances.

Bessel function of the first kind which has no nodes. There-
fore the radial index is zero. When u. > 0, however,
Ez(r) ~ J(ksr), which is an oscillatory function of its
argument.

Under these circumstances, the value of kR was cal-
culated from the values of H, and f measured at each par-
ticular resonance. In any case, it was found kR < p,4,
where p,, is the first root of J,. This guaranteed that the
azimuthal index was indeed zero.

It is on the occasion of calculating the values of kR for
each resonance under conditions of positive p that we
recognized the need to distinguish between two types of
TM, , 0 modes: the EGW-TM, , , modes and the FV-

“TMy ;0 modes. In the former type, E,(r) is peaked at the

disk’s edge, while in the latter E,(r) has a maximum at some
point within the range 0 < r < R. .

From a mathematical point of view this is equivalent to
saying that under conditions of positive p.,, EGW-
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Fig. 5. (a) Existance regions of EGW—TMO,,.,U modes on the k,R versus coordinate plane. When # >» kyR, the EGW-
TM,, .0 modes are strongly peaked at the disk’s edge. (b) Calculated radial behavior of E; normalized to E, ,,x above
(Hy = 2 kOe) and below (Hy = 0.5 kOe) the transition point (2 = 5).

TM, .0 modes exist for 0 < k,R < p,," and FV-TM, ,, ¢
modes exist for p,,’ < k,R < p,,. Here p,," indicates the
first zero of J,".

This mode classification may be conveniently represented
on a coordinate plane as shown in Fig. 5(a). In this figure,
the shaded region represents the existence domain of the
TMy,,,0 modes. It is delimited by the continuous curve
k;R = p,, and is partitioned into two subregions by the
dashed line kR = p,,’. The blank region for k,R > p, is
the existence domain of the higher order volume modes
TM,, 00 (m = 1,2,3,- - ). The pointed area represents the
region where the inequality n > kR is satisfied. In thi$
region, EGW modes exist with E,(r) strongly peaked at the

disk’s edge. In fact, when n >» kR, J(k;R) =~ [(k;R)"/
n! 2"] and
1 dBy(r)
ky dr

where the normalized quantity E;(r) = [E(r)/Ez(R)] has
been used.

Let us now transfer these considerations to the mode
chart of an actual ferrite MIC disk resonator (see Fig. 2).
On a mode chart, if one traces along an n-constant curve
(tuning curve) starting from high values of H,, one finds
EGW-TM, , , modes with a strong concentration of RF
power at the disk’s edge. Note the position of the n > kR

_ @)
@® .

n

13)

s
r=R X
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Fig. 6. Comparison between the mode chart of a disk resonator and a ring resonator.

region on the mode chart. As one moves toward lower
values of H,, one finds that the EGW character of the
TM, ., modes maintains down to a point where J,'(X) = 0.
At this point, hereafter called “transition point,” E,(r)
has a maximum at r = R with a horizontal tangent
(dEz/dr)|,=r = 0. Crossing this point in the high-to-low
H, direction, one finds that the maximum of E,(r) detaches
from the disk’s edge and penetrates into the ferrite volume
under the strip conductor. The EGW-TM, , , mode has-
transformed into an FV-T M‘O,,,,O mode. In Fig. 2, we have
indicated by an asterisk the various transition points. They
were found by intersecting each experimental tuning curve
with the kR = p,,’ curve calculated for the same 7. In
Fig. 5(b), we have reported the behavior of EAr) Ez max
calculated for two points, respectively, above and under
a transition point (n = 5, H, = 0.5 and 2 kOe). Note
how [J,/(X)/J,(X)] > 0 for an EGW mode while [J,'(X)/
JA(X)] < 0 for an FV mode. As far as the position of the
transition points on the mode chart is concerned, it may be
recognized that it depends upon the particular law of vari-
ation assumed for 47M as a function of H,. The transition
points of Fig. 2 were obtained for 4nM = H,. If one
assumes a dependence of the type 4nM = (dnMy)/(dnM)H,
[10], where 4nMy = 1.25 kOe is the remanence magnetiza-
tion for YIG, the transition points locus is represented by
the dashed curve in Fig. 2. Since no exact knowledge exists
of 4nM (H,), we tried to check the position of the transition
points by experiment. Experiments were carried out on such
a structure as an MIC ring resonator which would not
perturb the EGW resonances but drastically affect the FV
resonances. Fig. 6 shows the mode chart of a ring resonator
having the same outer diameter as the disk’s and a width

of 0.6 mm. A comparison with the disk’s results shows a
considerable similarity in the EGW regjon and an increasing
difference for decreasing values of H, where the disk’s
modes pick up a definite FV character. Unfortunately, an
exact experimental determination of the transition points
was not possible due to the gradual transformation of
EGW modes into FV modes. Let us now demonstrate that
the existence of the transition points in a magnetized ferrite
MIC disk resonator is due to the fringing fields and that this
information can be obtained directly from the characteristic
equation (10). In fact, recognizing that in the present range

of parameters u,/u; = —|u,/p,l and that
KO _ _|K©
K0 K0
the characteristic equation (10) may be recast in the form
J/(X) b KO - |k ,
D LA g e = I )
RS R R V 313 24

where the plus and minus signs in front of » are, respectively,
appropriate to an exp (jn6) or an exp (—jn6)-dependence.
From (10"), and recalling that [J,(X)/J.(X)] is either
positive or negative, respectively, for EGW and FV-
TMj ..o modes, one draws the following conclusions. 1) For
perfect magnetic-wall boundary- conditions, b/b’ = 0 and
the results of Table I apply. Here one finds the well-known
result that for exp (jnd), all the modes are FV, while for
exp (—jnf) the modes are EGW. 2) In the presence of
fringing fields, b/b’ > 0 and the situation is represented in
Table II. In this table, one sees that for one verse of
azimuthal propagation, (exp jnf), TM, , , modes are always
FV. For the opposite sense, a transition occurs when
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TABLE 1
NATURE OF TM ,,0 MODES IN AN EGW Disk RESONATOR WITH
PERFECT MAGNETIC-WALL BOoUNDARY CONDITIONS

AZIMUTHAL CHARACTERISTIC TYPE OF
DEPENDENCE EQUATION ™ . MODE
, 1,
J!'(x) "
2
exp (jnd L_..3|£] <9 FV
xp (in®) 3@ X
J(x) M
exp(-jnd) Jn(x) = % I “_2 | >0 ECW
TABLE II

SAME AS IN TABLE I BUT WITH FRINGING-FIELD EFFECTS
TAKEN INTO ACCOUNT

AZIMUTHAL CHARACTERISTIC — TYPE OF
DEPENDENCE EQUATION ™, . MODE
1]
T® oz,
Jn(x) X ul
exp (jnb) FV
.
b o b jfbets k(0 I
- [
b s K (D
M
n 2
3] = D EG
21 m S W
J! (%) "
n n 2 n o
exp(-in®) RGO 3 | m | 21 m | =p | TRANSITION
n 1 1
nlf2l<p v
X W

TABLE III
NATURE OF TMy,,,0 MODES IN A MIC Disk RESONATOR ON
AN IsoTROPIC SUBSTRATE OF RELATIVE DIELECTRIC
PERMITTIVITY &, AND MAGNETIC PERMEABILITY 4,

BOUNDARY CHARACTERISTIC TYPE OF
CONDITION EQUATION ™ MODE
0,n,0
PERFECT (x)
MAGNETIC 0 TRANSITION
WALL J (x) =
exp (+in¥)
I (x) [T K (C)
FRINGING n b T n
FIELDS T® b )T K0 ‘ VOLUME
n T n
J,/(X) = 0.3) For H, = 0 (see Table III), one always finds

volume modes and no EGW exist.

V. FRINGING-FIELD POWER

In Section III, it was shown that the fringing-field param-
eter b/b’ can be determined by measuring the frequency
spectrum of the resonator. Here we show how b/b’ is related
to the disk’s edge admittance as seen from under the disk
and how this quantity can be used to calculate the ratio of
the reactive power stored in the fringing fields P, to the
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RF power P,, contained within the ferrite volume under the
strip conductor.

The total edge admittance Y,, as seen from inside the
ferrite under the disk, is found by recognizing that the
boundary conditions at r = R require

2nRH,/(R) _
bE; (R) ¢
Upon substituting (3) and (4) into (14), one finds

LX) - . b ko
L2 I Fn=E=j— Ye off =
7@ e Ty,
which, when compared to (10), yields

2nR b K, ’(C)

YT RO

(14

(19)

Y, = (16)

b ¥

Once Y, is known, the reactive power stored in the fringing
fields is
Py = Y| [EZ(R)I*D*.

The RF power within the ferrite under the disk is

(17

Nope) (R
P, = nbw [,uo (—az)—ﬁz‘[ (IHrf|2+,H6fI2)r dar
0

R
- soeff |Ezfl?r dr] . (18)
0
Upon substitution of (3)-(5) into (17) and (18), one finds

P, b, KO
5= WX )[" tt ,.(o]

2
{(1 4 — w a/'l'eff) I:af Jn (t) dt
Hess O o !

n f Crdi 4y f " IO ae(t) d
0

- LX J2A ()t dt] } B 0

where f is a dammy variable and

2
o = 2n? (& + 1)
Hy

)

o
y=—-.
n

(19)

The integrals in (19) are solved as follows [11]:

X XZ
f 22O dt = T X0 = Iy (X0 (X))
’ ' (20)

X2ty & (=1 @nt2r—1)1 ()2
fo t dt = r;o r1Ia+r)![(n+7r)!]? (5)

[oorwa- 3

2))
-1)2n+2r—-1! ( t) 2(n+r)

'(2"—1+r)'[(n+r)']2 .

22)

Numerical computations using formula (19) revealed that
in the disk under consideration the ratio P,/P, is of the
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order of a few percents when b/b’ = 0.5. Note that formula
(19) is also applicable to MIC disk resonators of smaller
diameter, such as are used in the traditional Y-junction
MIC circulators.

VI. CoNCLUSIONS

A study has been presented of the TM, ,, modes in
ferrite MIC disk resonators of large diameter magnetized
perpendicularly to the ground plane. Fringing-field effects
have been included in the analysis via a semiempirical
equivalent model. A fringing-field parameter b/b’ has been
introduced which allows one to predict the correct mode
chart of a disk resonator. Numerical values of b/b’ have
been determined at C and X band for a dc magnetic field
ranging from O to 3.5 kOe. Transition points have been
found on the mode chart of the resonator where EGW
modes transform into FV modes. Fringing fields are found
to be responsible for the existence of these points. Finally,
the ratio of the fringing field’s power to the RF power
stored within the ferrite under the strip conductor is
determined as a function of the fringing-field parameter 5/b.’
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Experimental Measurement of Microstrip
Transistor-Package Parasitic Reactances

ROBERT J. AKELLO, MEMBER, IEEE, BRIAN EASTER, MEMBER, IEEE, AND I. M. STEPHENSON

Abstract—A resonance method of measurement is described for the
determination of the parasitic reactances of a microwave transistor
package mounted in microstrip. Results for two types of package ob-
tained from normal-sized and from scaled-up models are presented. The
influence of the parasitics on the characteristics of a typical microwave
FET chip is briefly discussed.

[. INTRODUCTION

HE parasitic reactances associated with the package or

mounting can seriously limit the performance of a
microwave semiconductor device and need to be accurately
known for good circuit and device modeling. Some diode
packages in coaxial mounts, such as the S4 have been
examined thoroughly [1], [2], but relatively sparse data are
available on packages for microstrip application [3], [12].
The rapid advance in the performance of gallium arsenide
FET’s highlights the need for the accurate characterization
and improvement of packages and mountings suitable for
hybrid MIC’s. In this paper two types of transistor packages
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will be considered, the leadless inverted device (LID) and
the S2 package proposed by James ef al. [4].

Previous papers [ 5]-[ 7] have described the measurement
of the small reactances and susceptances of microstrip
junctions and discontinuities, using a resonance technique
and a close approach to a substitution procedure. In this
procedure the change in resonant frequency is observed
when the unknown element is introduced into a microstrip
resonant circuit, only light coupling through noncritical
connections being required for accurate determination of
resonance. This method has the advantage of largely avoid-
ing the problems entailed in the measurement of microstrip
circuits through a coaxial-to-microstrip transition. While
this approach often cannot be directly used for active
devices, due to the low-circuit Q-factor that would result,
it can be usefully applied to the study of the package para-
sitics. In addition to examining normal-sized packages with
the active element appropriately disabled or disconnected,
the method has been used to study scaled-up models of the
package and circuit, Stycast material of the correct permit-
tivity being employed in place of the ceramics of the package
and circuit substrate. This is a quick and accurate method



